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Abstract� Gridline graphs can be realized in the plane with vertices adjacent whenever
they are on a common vertical or horizontal line
 We review some applications and char	
acterizations� e
g
 they are line graphs of bipartite graphs� and provide practical O�jV j��
algorithms for some classical problems
 We extend gridline graphs from the plane to higher
dimensions
 We characterize these graphs using a vertex coloring of the clique graph that
corresponds to the conditions that� in the intersection graph of lines parallel to axes in IRn�
any cycle of four lines must remain in two dimensions and any path between two given lines
must traverse the same two dimensions
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�� Introduction and Background

A gridline graph is a graph that can be realized in the plane with vertices adjacent
whenever they are on a common vertical or horizontal line
 These graphs were introduced in	
dependently by Hedetniemi ��� who called them graphs of ������matrices� by Cook� Acharya�
Devadas� and Mishra ��� who called them adjacency graphs� by Gurvich and Temkin ���
where the English translation called them checked graphs� by Beineke and Broere �
� who
called them rooks� graphs� and by the author in �

�


Gridline graphs are used by Galvin ��� in his proof of the Dinitz Conjecture� which was
that if each edge of the complete bipartite graph Kn�n is assigned a list of n colors� then
there is a proper edge coloring in which each edge is assigned a color from its list
 Ma�ray
��� showed that a kernel in a certain gridline graph corresponds to a stable marriage system


Edge and vertex colorings in general have application to many problems such as storage�






scheduling� and �eet maintenance �see e
g
 Roberts �
���
 One such application is the
timetabling problem� which is to assign course sections to periods so that no course has
concurrent sections� Form a gridline graph with a vertex at �i� j� whenever teacher i is
assigned to teach a section of class j� and then a proper vertex coloring corresponds to an
assignment of periods


Another application of gridline graphs is to Rook polynomials �see e
g
 Roberts �
���� a
combinatorial device for counting the number of ways objects can be placed on a board so
that each object is in one of a set of allowable positions and no two objects are on a common
line
 This can be rephrased as counting the number of independent sets in a gridline graph


One �nal application we mention is in robotics
 Linear movement is easy for robots but
turns are di�cult
 If movement is restricted to the vertical and horizontal and turns are
allowable only at certain points� then a shortest path in a gridline graph gives the number
of turns required
 Allowing motion in a third dimension can be modeled by a �	dimensional
gridline graph


In addition to their applications� gridline graphs are of interest because they are line
graphs of bipartite graphs� which constitute an important class of perfect graphs
 As such
they are considered� for example� by Ma�ray and Preissmann �
�� who studied induced sub	
graph vertex orderings for a type of sequential coloring� and by Ho�man ����� who considered
spectra and other properties
 For other references to these graphs� see the introductory para	
graph in Hedetniemi ���


We review some characterizations of gridline graphs� observe that they are perfect� and
give practical polynomial	time algorithms for �ve classical problems
 We extend gridline
graphs from the plane to higher dimensions and characterize these graphs� these characteri	
zations involve a vertex coloring that has a natural geometrical interpretation


In this paper� a graph G � �V�E� is undirected and has no multiple edges or loops

With a common abuse of language� we often refer to a vertex or edge as being in a graph G�
and write� for example� v � G or uw � G instead of v � V �G� or uw � E�G�
 The cardinality
of V �and� consequently� of E� is �nite or denumerable
 We take a clique to be a maximal
complete subgraph
 The clique graph K�G� of a graph G has as its vertex set the cliques
of G� with two vertices adjacent whenever they have some vertex of G in common
 Cliques
are typically denoted using capital letters
 Hence� vertices of clique graphs are denoted by
capital rather than small letters
 The line graph �L�G� of a graph G has as its vertex set the
edge	set of G� and vertices of L�G� are adjacent whenever� as edges of G� they are adjacent

If G and H are graphs then G is H�free means that no induced subgraph of G is isomorphic
to H
 Also� a coloring is always proper


�� Two�Dimensional Gridline Graphs

�



A gridline graph is a graph G that is isomorphic to some graph G � called a realization
of G � whose vertices are located in IR�� no two vertices have the same coordinates� and
�distinct� vertices at �x� y� and �x�� y�� are adjacent whenever x � x� or y � y�
 That is�
G can be realized in the plane such that no two vertices are colocated and two vertices are
adjacent whenever they are on a common vertical or horizontal line
 Any gridline graph can
be realized in N� since V �G� is countable � hence the name
 The term line� in the context
of a gridline graph realization� always refers to a vertical or horizontal line


Observe that� in a gridline graph� any two cliques contain at most one common vertex

The following lemma characterizes this property
 It has been used often before �e
g
 Tucker
�
���� and its simple proof is omitted here �see Peterson �

�
���
 A diamond is a K� minus
one edge


Lemma ���� A graph is diamond�free if and only if any two cliques intersect in at most one
vertex� which holds if and only if each edge lies in exactly one clique� jjjjjjjjjjjjjjjjjjjjjj

A claw is a K���
 A hole �or n�hole� of a graph G is an induced n	cycle where n � �

An odd hole is a hole of odd length
 Theorem �
� below characterizes gridline graphs
 These
characterizations were �rst due to Hedetniemi ��� and were independently noted by Peterson
�
�� and Beineke and Broere �
�
 We brie�y sketch a proof since some of its ideas prelude
techniques used later in the paper


Theorem ���� For any graph G� the following statements are equivalent	

�a� G is a gridline graph�

�b� G is the line graph of a bipartite graph�

�c� G is diamond�free and K�G� is bipartite�

�d� G is diamond� and claw�free and has no odd hole�

Sketch of Proof� �a���d�� None of the graphs in �d� can be �an induced subgraph of�
a gridline graph
 �d���c�� If G has no odd hole and K�G� is not bipartite� then it is
straightforward to show� by contradiction� that a smallest odd cycle of K�G� is a triangle

It is then easy to show �e
g
 using Lemma �
� in Section �� that G contains an induced claw
or diamond
 �c���a�� Construct a gridline graph by placing cliques of G having one color
on vertical lines and cliques having the other color on horizontal lines
 By Lemma �

� no
two vertices are colocated
 �b���a�� Given a bipartite graph H� construct the �	
 matrix
A � �aij� where the rows and columns correspond to the two partite sets with aij � 
 i�
the vertices corresponding to row i and column j are adjacent
 Construct the gridline graph

�



with a vertex at �i� j� i� aij � 

 It is immediate that L�H� and G are isomorphic
 Since
a gridline graph can be realized with vertices only at positive integral points� the argument
works in reverse
 �The most concise full proof available is in Peterson �
��
� jjjjjjjjjjjjjjjjjjjjjj

Several facts about gridline graphs are immediate

�
� In a realization� we can identify each clique with a unique line
 �If a clique is an isolated
vertex� then either line containing the vertex can be chosen to represent the clique
�
��� A gridline graph does not have a unique realization

��� Any induced subgraph of a gridline graph is also a gridline graph� but this need not be
true for a partial �not necessarily induced� subgraph � take a �	cycle with and then without
a chord

��� The set of minimal forbidden induced subgraphs � that is� the set fG � G is not a gridline
graph but any induced subgraph isg � is not �nite
 For example� any odd hole is a minimal
forbidden induced subgraph

��� If G is a gridline graph then we can construct a bipartite graph H such that L�H� � G
by �rst constructing K�G�� then �a� converting each isolated vertex into a component of two
vertices and �b� adding a vertex of degree one for each vertex in G that is in only one clique

��� Gridline graphs are perfect
 A graph is perfect whenever ��G�� � ��G�� for every induced
subgraph G� of G� where � is the clique number �size of a maximum clique� and � is the
chromatic number
 �In this de�nition and the remainder of the section� we assume that G
is �nite
� Perfectness of gridline graphs was proved by Hedetniemi ��� and independently by
Gurvich and Temkin ��� and Peterson �

�
��
 It also follows from the result by Tucker �
��
that a diamond	free graph with no odd hole is perfect


We conclude this section by noting that� for gridline graphs� �ve classical graph theory
problems take time polynomial in the number of vertices �and edges�
 The emphasis below
is to demonstrate polynomiality and simplicity of the algorithms
 �Problems �
�� ���� and
��� were shown to be polynomial for all perfect graphs by Gr�otschel� Lov�asz� and Schrijver
���
 Their approach is based on the ellipsoid method and uses a polynomial	time separation
algorithm� and they do not recommend it for practical use
�

A simple algorithm for �nding a nontrivial clique is to permute vertices of the adjacency
matrix �that is� permute lines of the matrix� to obtain a maximal square of 
�s in the upper	
left corner� excluding the diagonal entries
 If G is a gridline graph then� to �nd other cliques�
remove these 
�s� since each edge is in no other clique
 If some edge of G is in two cliques
� that is� G is not diamond	free � then� after �nding some clique� say with r vertices� there
will be another line in the adjacency matrix with at least two 
�s among the �rst r positions


To see the complexity of the above algorithm� �rst observe that if each vertex is in at
most two cliques then the sum of the clique sizes is at most �n� where jV j � n� it then
follows that there are at most n cliques
 In �nding another vertex in a clique� where k
vertices have already been identi�ed as being in the clique� the �rst k entries in at most
n�k lines are checked
 Since k�n�k� � n���� the total time to �nd a clique with size r is at

�



most n�r��
 Summing for each clique� the time is O�n��
 The complexity of testing whether
G is diamond	free is also O�n��� since after each clique there are at most r�n � r� � n���
checks


��� Finding the clique number and a maximum clique �in fact� all cliques�� Find
all cliques of G �using� say� the algorithm given above�


��� Recognition� Find all cliques of G and test whether G is diamond	free
 Then� construct
K�G� and determine whether it is bipartite �using� say� a breadth	�rst search� which takes
time O�m�� where m� � jE�K�G��j � n�n� 
����


��� Realization� Find all cliques and a bipartition of K�G�
 Construct the bipartite graph
H as described in the �fth fact following the proof of Theorem �
�
 Then construct the
matrix A and its associated gridline graph as in the proof of Theorem �
�


��� Finding the chromatic number and a minimum coloring �more generally�
	nding a k
coloring where k � ��� The chromatic number � is equal to �� found in
problem �
�
 Tucker �
�� gives an O�kn�� algorithm for perfect diamond	free graphs� and
Ma�ray and Preissmann �
�� give an O�mn� algorithm �where jEj � m� for a class of perfect
graphs containing gridline graphs


��� Finding the independence number and a maximum independent set� Find a
maximum set of independent 
�s in the matrix A mentioned in problem ��� �using� say� a
maximum �ow algorithm�


Some of these problems can be rephrased in terms of a bipartite graph H of which G is
the line graph � for example� a maximum independent set of G corresponds to a maximum
matching of H
 From problem ���� H can be constructed in time O�n��
 There are good
algorithms for bipartite graphs� e
g
 Schrijver �
�� gives an O��m� algorithm� where � is
the maximum degree� for edge	coloring a bipartite graph� which corresponds to O��n� for
vertex	coloring a gridline graph


�� Higher Dimensional Gridline Graphs

In this section we extend gridline graphs from the plane to higher dimensions and
characterize these graphs
 A p�dimensional �or� for brevity� p	d� gridline graph� where p � N�
is a graph G that is isomorphic to some graph G whose vertices are located in IRp� no two
vertices have the same coordinates� and vertices at x � �x�� � � � � xp� and x� � �x�

�
� � � � � x�

p�

�



are adjacent whenever they di�er in exactly one entry
 That is� G can be realized in IRp

such that no two vertices are colocated and two vertices are adjacent whenever they are
on a common line that is parallel to some axis
 Any p	d gridline graph can be realized in
Np
 Analogous to a �	dimensional gridline graph� a realization is a graph G as given in the
de�nition� and the term line� in the context of a realization� always refers to a line parallel
to some axis in IRp


The p	d gridline graphs were independently considered by Beineke and Broere �
�� who
called them p�dimensional rooks
 graphs


Like ��	d� gridline graphs� any induced subgraph of a p	d gridline graph is also a p	d
gridline graph
 But� by the same example used for gridline graphs �a �	cycle with and then
without a chord�� a partial subgraph need not be a q	d gridline graph for any q � N
 Also� a
p	d gridline graph does not have a unique realization � for example� hyperplanes perpendic	
ular to an axis can be permuted
 Unlike �	d gridline graphs� however� a p	d gridline graph
need not be a line graph for any graph� Line graphs are claw	free� but a claw is a �	d gridline
graph


We begin with four lemmas
 The proofs are straightforward �see Peterson �

�
��� and
are omitted here
 Recall that vertices of the clique graph K�G� are denoted by capital rather
than small letters


Lemma ���� Suppose G is a diamond�free graph and that fAj � j � J � Ng is a set of
cliques in G that induces a complete subgraph in K�G�� Then there exists a unique vertex
v � G such that Ai � Aj � fvg whenever i �� j� jjjjjjjjjjjjjjjjjjjjjj

By Lemma �

� diamond	free graphs satisfy the clique�Helly property �Prisner �
����
which is that if a set of cliques pairwise intersect then their intersection is nonempty


Lemma ���� If G is a diamond�free graph then so is K�G�� jjjjjjjjjjjjjjjjjjjjjj

Lemma ���� Suppose G is a diamond�free graph� Then G has a ��hole if �and� in fact� only
if� K�G� has a ��hole� jjjjjjjjjjjjjjjjjjjjjj

Lemma ���� Suppose H is a diamond�free graph and Z is a cycle in H containing the
vertex a� If the two vertices consecutive to a in Z are not adjacent� then a is in a hole whose
vertices are in Z� jjjjjjjjjjjjjjjjjjjjjj

Lemma �
� will be used in the following way� Suppose that G is a diamond	free graph� in
which case� by Lemma �
�� K�G� is also diamond	free
 Suppose further that K�G� contains

�



a cycle Z with vertex A satisfying the lemma conditions for a� and that the vertices of K�G�
are colored so that all other vertices of Z have a color di�erent from A
 Then A is in a hole
whose other vertices all have a color di�erent from A


We proceed to characterize p	d gridline graphs� following a de�nition
 In a vertex	
colored graph� the color c separates vertices u and v whenever c appears on the interior
of every �u� v�	path
 Observe that if u and v are in di�erent components then they are
separated by every color


Proposition ���� A graph G is a p�d gridline graph if and only if it is is diamond�free and
K�G� is p�colorable such that �a� no hole contains some color exactly once� and �b� every
pair of vertices at distance greater than two is separated by at least two colors�

Remark� The p	colorability in the proposition statement has a geometrical interpretation

Any �A�B�	path in K�G� corresponds to a path of lines �cliques of G� between the two lines
lA and lB corresponding to A and B� respectively
 If we let colors correspond to dimensions
�parallel lines�� then �a� says that any cycle of lines from lA to lB and back to lA � where the
cycle is actually in the intersection graph of lines � must traverse each intermediate dimension
at least twice
 Condition �b� says that there are two dimensions such that any path of lines
from non	intersecting lines lA to lB � except for a direct line �if one exists� between lA and
lB � must traverse those two dimensions
 Suppose� for example� that lA and lB intersect� but
there is no point of G at the intersection
 Then any path of lines between lA and lB must
contain a line parallel to lA and one parallel to lB
 Similar geometric arguments hold for the
other three cases� Lines lA and lB are nonparallel and nonintersecting� are parallel and in a
common plane that is perpendicular to some axis� or are parallel and in no common plane
perpendicular to some axis


Proposition �
� states that these necessary geometric conditions� together with being
diamond	free� are also su�cient


Proof� In the case p � 
� G is a p	d gridline graph i� G is complete� so K�G� is a single
vertex
 It is immediate that this satis�es the 
	coloring condition
 Conversely� the given

	coloring implies that K�G� is an independent set� condition �b� implies that K�G� is a
single vertex� since otherwise there is only one color to separate the vertices having in�nite
distance


Suppose p � �
 To avoid confusion between vertices in G and vertices in K�G�� we refer
to vertices in G as points


Before showing the equivalence of the statements� we make some important observations

The �rst is similar to the �rst fact following the proof of Theorem �
�� In a realization of
a p	d gridline graph� we can identify each clique with a unique line �parallel to one of the
axes�
 Each such line � that is� each clique � can be represented by a p	vector with a 	 in
the entry corresponding to the parallel axis� and real numbers in the other p � 
 entries


�



Parallel lines have a 	 in the same entry and do not intersect

Next� two cliques A and B of G are adjacent in K�G� i� there is a point of G agreeing

with both A and B on their respective p � 
 non		 entries
 Thus A and B agree on their
common p� � non		 entries
 Two facts follow�

�i� If there is a path in K�G� containing no vertex whose p	vector has a 	 in entry r� then
every vertex in the path agrees on entry r


�ii� If there is an �A�B�	path inK�G�� the interior of which contains no vertex whose p	vector
has a 	 in entry r� then there are points of G in A and B that agree on entry r


Finally� when using �b�� we need not be concerned whether A and B are connected
in K�G�� if not� then their distance d�A�B� is in�nite and �b� holds� since A and B are
separated by p colors� p � �


��only if�� Suppose G is a p	gridline graph
 It is diamond	free since any induced sub	
graph must itself be a p	d gridline graph


We may assume that G is a realization
 For r � 
� � � � � p� color each clique of G having
a 	 in entry r with the color r
 We assume this coloring in the proofs of �a� and �b� below


Proof of �a�� Suppose K�G� contains an n	cycle Z� n � �� containing some color exactly
once� w
l
o
g
 it is the color 
 at vertex A� and A has p	vector �	� a�� � � � � ap�
 By �i�� all
vertices in Z other than A agree on the �rst entry� say at a�
 Thus a point at �a�� a�� � � � � ap�
is responsible for linking A to the two vertices consecutive to A in Z
 But then these two
vertices are also linked by this point� so Z has a chord


Proof of �b�� Suppose A and B are separated at most by one color� w
l
o
g
 color 

 We
show that there are points in A and B that di�er on at most the �rst entry
 This proves �b��
If these points are the same then d�A�B� � 
� and otherwise they are in a common clique
that intersects A and B� so d�A�B� � �
 Suppose A has color s and B has color t
 By �ii��
A and B di�er at most on entries 
� s� and t
 We consider three cases


Case �	 s � t � 

 Then A � B since they each have the same p	vector� which has a 	
in the �rst entry


Case �	 jf
� s� tgj � �
 W
l
o
g
 s �� 

 Then A and B di�er at most on entries one and
s
 By �ii�� there are points in A and B that agree on entry s� so they di�er at most on the
�rst entry


Case 
	 
� s� t are distinct
 By �ii�� A has a point that agrees with B on entry s� and B
has a point that agrees with A on entry t
 Then these two points agree on entries s and t�
so they di�er at most on the �rst entry


��if�� We will construct a p	d gridline graph in Np that is isomorphic to G
 Label the
points of G as v�� v�� � � � �odd indices�
 Color K�G� with the colors 
� � � � � p according to �a�
and �b�
 For each j� j � 
� � � � � p� remove from K�G� the vertices colored j and label the
components of this graph as Kj��� Kj��� � � � �even indices�


Let Np
�
be the set of p	vectors with a 	 in exactly one entry and positive integers in the

�



other p� 
 entries
 De�ne the mapping g � V �K�G��
 Np
�
by�

gj�A� �

�
	 if A has color j
s if A is in Kj�s

That is� the jth entry of A is a 	 i� A has color j� and two cliques not colored j agree
on entry j i�� in K�G�� they are not separated by color j
 We show that this is injective

Suppose in contradiction that two cliques A and B have the same p	vector
 Then they have
the same color� w
l
o
g
 color 

 Now� for j � 
� gj�A� � gj�B� means that at most color 

separates A and B in K�G�
 By �b�� d�A�B� � �
 Since A and B have the same color but
A �� B� d�A�B� � �
 Then there is a path ACB where C has another color� w
l
o
g
 color
�
 Since A and B agree on the second entry� there is another �A�B�	path in which color �
does not appear
 These two paths form a cycle in K�G� in which the vertices A and B that
are consecutive to C are not adjacent� and C is the only vertex in the cycle with the color
�
 By �the statement following� Lemma �
�� this violates �a�


Now de�ne the mapping f � V �G�
 Np by�

fj�v�� �

���
��

gj�A� if v� � A for some clique A where gj�A� �� 	�
that is� where A is not colored j

� otherwise

That is� v� inherits the entries from the cliques in which it is contained� if it is in only one
clique then the unassigned entry obtains the value �� which is unique to v�
 The mapping
f is well de�ned since� if v� is in two cliques A and B then they are adjacent� and by the
mapping g they agree on their common p � � non		 entries
 Note that� by this argument�
facts �i� and �ii� hold for G with respect to the mappings f and g
 We now proceed to show
that G and the realization de�ned by f are isomorphic


Vertex correspondence	 We must show that f is injective� that is� that no points in f�V �
are colocated in the realization
 Suppose in contradiction that v� �� v� but f�v�� � f�v��

Observe that v� is in at least two cliques �necessarily having distinct colors�� since otherwise
one of its entries is the unique value �
 Similarly� v� is in at least two cliques
 We consider
two cases


Case �	 v� and v� are in some common clique A
 W
l
o
g
 A has color 

 Both v� and
v� inherited the same �rst entry from cliques B and C� respectively
 Observe that B �� C�
since otherwise A and B both contain v� and v�� which by Lemma �

 violates that G is
diamond	free
 By the mapping g� B and C obtained the same �rst entry because there is a
�B�C�	path in K�G� not containing color 

 This path together with A form a cycle Z in
K�G�
 Now B and C are not adjacent� since otherwise ABC is a triangle in K�G�� and by
Lemma �

 v� � v�� violating our hypothesis
 But A is the only vertex colored 
 in Z� and
its consecutive vertices B and C in Z are not adjacent� by Lemma �
� this violates �a�


Case �	 v� and v� are in no common clique
 Suppose v� � A� and v� � A�
 Since v�
and v� inherited their entries from the cliques containing them� A� and A� agree on their
non		 entries
 It follows that they must have di�erent colors� since otherwise A� � A� by

�



the injection g
 W
l
o
g
 f�v�� � f�v�� � �a�� a�� � � � � ap�� A� has color 
 and so g�A�� �
�	� a�� � � � � ap�� and A� has color � and so g�A�� � �a�� 	� � � � � ap�
 We show that A� and A�

violate �b�

We �rst show that d�A�� A�� � �
 Suppose that A� and A� intersect in G
 Then there

is a point w at their intersection� it must also have p	vector �a�� a�� � � � � ap�
 Observe that w
cannot be v� or v�� since otherwise v� and v� are adjacent� violating case � hypothesis
 Now
we can apply case 
 to w and either v� or v�� reaching a contradiction
 Now suppose that
A� and A� both intersect some other clique A�
 Then A� has a third color� w
l
o
g
 color
�� so A� has p	vector �a�� a�� 	� � � � � ap�
 Hence A� intersects with both A� and A� at points
each with p	vector �a�� a�� a�� � � � � ap�
 These two points are distinct� since otherwise A� and
A� intersect and we can apply case 
 to these two points to obtain a contradiction
 Thus
d�A�� A�� � �


Now we show A� and A� are not separated by at least two colors �in fact� by any color�

Recall that v� is in some clique B other than A�� and B cannot have the color 

 See Figure
�




Figure �

� Vertex correspondence� case �

Then� by the mapping g� there is a �B�A��	path not containing color 
� and concatenating
A� at the front of this path yields an �A�� A��	path not containing color 
 in its interior

�Similarly� there is an �A�� A��	path not containing color � in its interior
� For j � �� by the
mapping g� there is an �A�� A��	path not containing color j
 Thus A� and A� violate �b��
concluding case � and the vertex correspondence


Edge correspondence	 We must show�

v� and v� are adjacent in G �� f�v�� and f�v�� di�er in exactly one entry

��� Since v� and v� are adjacent they are in some common clique� so f�v�� and f�v��
agree in at least p� 
 of their entries
 By the vertex correspondence� f�v�� �� f�v��


��� Suppose that f�v�� and f�v�� di�er in exactly one entry� w
l
o
g
 the �rst entry
 We
can write f�v�� � �a�� a�� � � � � ap� and f�v�� � �b�� a�� � � � � ap�� where a� �� b�
 Now suppose
in contradiction that v� and v� are not adjacent� that is� are in no common clique
 Let

V� � fcliques �vertices of K�G�� containing v�g
V� � fcliques �vertices of K�G�� containing v�g

By supposition� V� and V� are disjoint
 Any two cliques from V� � V� agree on the non		
entries� except possibly on the �rst entry
 We consider four cases


Case �	 There is a color 
 vertex in both V� and V�� say A� � V� and A�

�
� V�
 But

then A� and A�

�
agree on all entries� so by the injection g� A� � A�

�



Case �	 One of V� and V� contains only one vertex� and it does not have color 

 W
l
o
g

V� contains only A�� with color �
 Then f��v�� � �
 But f��v�� �� � since the value � is
unique to v�� this violates our assumption



�



Case 
	 Exactly one of V� and V� contains a color 
 vertex� and the other contains more
than one vertex
 W
l
o
g
 V� contains A�� and V� contains A� and A�� where Aj has color j

A� has the p	vector �	� a�� a�� � � � � ap�� A� has �b�� 	� a�� � � � � ap�� and A� has �b�� a�� 	� � � � � ap�

See Figure �
�
 We show that d�A�� A�� � � and that A� and A� are separated only by color

� violating �b�


Figure �
�� Edge correspondence� case �

Suppose there is an �A�� A��	path not containing color 
 in its interior
 Then� by �ii��
A� contains a point with p	vector �b�� a�� a�� � � � � ap�
 But� by the vertex correspondence� this
is v�� so v� and v� are in a common clique� violating our hypothesis
 Thus any �A�� A��	
path contains a color 
 vertex in its interior
 Since this vertex cannot be adjacent to A��
d�A�� A�� � �


Next we show that A� and A� are not separated by color j� j � 

 By the mapping g
there is an �A�� A��	path not containing color �� concatenating A� on the end of this path
gives an �A�� A��	path not containing color � in its interior
 For j � �� by the mapping g�
there is an �A�� A��	path not containing color j


Case �	 V� and V� each contain at least two vertices� and neither contains a color 

vertex
 Then there are A� � V� and A� � V� where A� and A� have di�erent colors
 W
l
o
g

A� has color �� A� has color �� Ar � V� and has color r �� �� and As � V� and has color
s �� �
 See Figure �
�
 We show that d�A�� A�� � � and that A� and A� are separated only
by color 
� violating �b�


Figure �
�� Edge correspondence� case �

Now A� and A� di�er on the �rst entry and so are separated by color 

 Hence
d�A�� A�� �� 

 Suppose d�A�� A�� � �
 Then there is a path A�BA� where B has color


 This implies that B has p	vector �	� a�� a�� � � � � ap�
 Then B intersects A� and A� at
points whose p	vectors are �a�� a�� a�� � � � � ap� and �b�� a�� a�� � � � � ap�� respectively
 But� by
the vertex correspondence� these are v� and v�� so these points are in a common clique�
violating our hypothesis
 Thus d�A�� A�� � �


Next we show that A� and A� are not separated by color j� j � 

 By the mapping g
there is an �Ar� A��	path not containing color �� concatenating A� on the front of this path
gives an �A�� A��	path not containing color � in its interior
 Similarly� using �A�� As�� there
is an �A�� A��	path not containing color � in its interior
 For j � �� by the mapping g� there
is an �A�� A��	path not containing color j


This completes the edge correspondence and the proof
 jjjjjjjjjjjjjjjjjjjjjj







Before proceeding� we make some observations about Proposition �
�

�
� If p � � then Proposition �
� reduces to the equivalence of �a� and �c� in Theorem �
�

��� A ��nite� p	d gridline graph need not be perfect when p � �
 For example� a �	cycle is a
�	d gridline graph since its clique graph� which is also a �	cycle� can be colored consecutively
as 
�����
������

��� Like ��	d� gridline graphs� p	d gridline graphs �p � �� have no �nite set of minimal
forbidden induced subgraphs
 Take a graph G as shown in Figure �
�


Figure �
�� G satis�es �a� but not �b�

Then K�G� is �	colorable according to �a�� the only two such colorings �within isomorphism
of colors� are shown
 But vertices x and y violate �b� in either coloring
 If k � � then it is
straightforward �though tedious� to check that removing any vertex from G yields either a
�	d or �	d gridline graph �see Peterson �
�� for details�

��� Both �a� and �b� are needed in the proposition
 From the previous fact� there are graphs
satisfying �a� but not �b�
 To see that �a� is necessary� take G as a �	cycle
 Then K�G� is
also a �	cycle� so �b� is satis�ed since no pair of vertices have distance greater than two
 But
�a� is not satis�ed for any p
 It is true� however� that �a� can be relaxed to include only �	
and �	holes
 The following lemma will allow us to do this


Lemma ���� Suppose H is a diamond�free graph and 	 is a p�coloring of H in which every
pair of vertices at distance greater than two is separated by at least two colors� Then� using
the coloring 	� no hole contains some color exactly once if and only if there is no ��hole and
every ��hole is colored with exactly two colors�

Proof� ��only if�� This is immediate

��if�� Suppose H has no �	hole and every �	hole is colored with exactly two colors


Then no �	 or �	hole contains some color exactly once
 We must show the result for any
n	hole where n � �
 Suppose that a� b� c� d� e� f are consecutive vertices in an n	hole Z where
n � �� and suppose in contradiction that some color appears exactly once on Z� w
l
o
g

color 
 appears only at c


There must be a vertex g adjacent to both b and e� since otherwise these two vertices
violate the color separation� Color 
 must be one of the separating colors� but color 
 does
not appear in the �b� e�	path on the part of Z avoiding c
 Then bcdeg is a �	cycle
 It must
have a chord� the possibilities are gc and gd
 If both are present then fb� c� d� gg induces
a diamond
 Edge gc alone implies that cdeg is a �	hole and would force e to be colored 
�
violating our hypothesis
 Thus gd � H and gc �� H
 Then bcdg is a �	hole� so b and d have
the same color� w
l
o
g
 color �� and g is colored 



Now there must be a vertex h adjacent to both a and e� since otherwise color 
 does
not separate them using the part of Z avoiding c
 There are two cases



�



Case �	 g � h
 There must be a vertex i adjacent to b and f � since otherwise color 

must be one of the separating colors by path bgef � but color 
 does not appear on the part
of Z avoiding c
 Now i �� g� since otherwise fg � H and fd� e� f� gg induces a diamond

Also i �� a� since otherwise af � H and agef is a �	hole� which forces f to be colored 
 and
violates our hypothesis
 Then bgefi is a �	cycle
 Possible chords are fg� ei� and gi
 Edge
fg is not in H as mentioned above
 Edges ei and gi together imply that fb� g� e� ig induces
a diamond
 Edge ei alone implies that bgei is a �	hole� which forces e to be colored � and
violates a proper coloring
 Edge gi alone implies that efig is a �	hole� which forces f to
be colored 
 and violates our hypothesis
 Thus there is no chord� so bgefi is a �	hole� a
contradiction


Case �	 g �� h
 Then abgeh is a �	cycle
 Possible chords are ag� bh� and gh
 We need
not consider ag� since this is case 

 Edges bh and gh together imply that fb� g� e� hg induces
a diamond
 Edge bh alone implies that bgeh is a �	hole� which forces e to be colored � and
violates a proper coloring
 Edge gh alone implies that abgh is a �	hole� which forces a to
be colored 
 and violates our hypothesis
 Thus there is no chord� so abgeh is a �	hole� a
contradiction
 jjjjjjjjjjjjjjjjjjjjjj

A p�gridline coloring of a graph is a p	coloring in which every �	hole is colored with
exactly two colors and every pair of vertices at distance greater than two is separated by at
least two colors
 A graph that admits a p	gridline coloring is said to be p�gridline colorable

We now proceed to the main result of the section


Theorem ��
� A graph G is a p�d gridline graph if and only if it is diamond�free� has no
��hole� and K�G� is p�gridline colorable�

Proof� We observe that the conditions of the theorem are equivalent to those of Proposition
�
�
 Condition �a� of the proposition for �	holes implies that G has no �	hole� and �a�
and �b� imply p	gridline colorability
 Conversely� since G is diamond	free and has no �	
hole� Lemmas �
� and �
� imply that the same holds for K�G�
 Applying Lemma �
� with
H � K�G� implies �a� and �b�
 jjjjjjjjjjjjjjjjjjjjjj

Recall the remark following the statement of Proposition �
�� which gave a geometrical
interpretation for the conditions of the proposition
 Now� condition �a� of the proposition�
that no hole contains some color exactly once� is essentially replaced with the �apparently�
weaker condition that every �	hole is colored with exactly two colors
 This is the obviously
necessary condition that any �	cycle of lines in a realization must remain in two dimensions



�



�� Blow�ups of Gridline Graphs

This section extends the results of the two previous sections to include graphs in which�
in a realization� vertices may be colocated � in which case they are adjacent
 We call these
p	d gridline blow�up graphs


A blow�up is a complete subgraph whose vertices all have the same closed neighborhood �
so named because it is sometimes constructed by blowing up a single vertex
 In a realization�
vertices that are colocated constitute a blow	up
 The inverse concept is the reduced graph of
G� which is obtained from the graph G by reducing each maximal blow	up to a single vertex

�A graph containing no blow	ups is said to be reduced� or canonical
� It is immediate that
a graph is a p	d gridline blow	up graph i� its reduced graph is a p	d gridline graph
 Using
the concepts of blow	up and reduced graph� we can obtain characterizations of p	d gridline
blow	up graphs that are analogous to our earlier results


A multigraph may have multiple edges and loops �though every multigraph in this
section is bipartite and thus has no loop�� and its vertex set and edge	multiset are each �nite
or denumerable
 Repeated elements in the edge	multiset are distinguished as vertices in the
line graph of a multigraph
 If G is a graph and G is a set of graphs� then G is G�free means
no induced subgraph of G is isomorphic to any graph of G


The characterizations of p	d gridline blow	up graphs involve the graphs shown in Figure
�


 They are a ��fan �also called a gem�� a ��wheel� and a stingray


Figure �

� �	fan� �	wheel� and stingray

Let F � consist of a claw� �	fan� and �	wheel� and let F be F � together with all cycles of odd
length
 Let H� consist of a stingray� �	fan� and �	wheel� and H consist of H� together with
a �	cycle
 The two main results of this section are below


Theorem ���� For any graph G� the following statements are equivalent	

�a� G is a ���d� gridline blow�up graph�

�b� G is the line graph of a bipartite multigraph�

�c� K�G� is bipartite�

�d� G is F�free� jjjjjjjjjjjjjjjjjjjjjj

Theorem ���� A graph G is a p�d gridline blow�up graph if and only if it is H�free and


�



K�G� is p�gridline colorable� jjjjjjjjjjjjjjjjjjjjjj

Using the two lemmas below� these theorems are straightforward extensions of Theorem
�
� and Proposition �
�� the proofs are omitted
 Lemma ��
 characterizes the property of a
�	d gridline blow	up graph that any vertex is in at most two cliques� the proof of Theorem
�

 uses this lemma in place of Lemma �


 Lemma ��� characterizes the property of a p	d
gridline blow	up graph that vertices in two common cliques must be in a common blow	up�
the proof of Theorem �
� relies on this lemma
 The simple proof of Lemma �
� is omitted


Lemma ���� For any graph G� the following statements are equivalent	

�a� G is F ��free�

�b� No vertex of G is in more than two cliques�

�c� K�G� is triangle�free�

Proof� �b���c�� If K�G� contains a triangle A�A�A� such that A� �A� �A� � 
� then take
three vertices from A��A�� A��A�� and A��A�� respectively
 These three vertices induce a
triangle and hence are in some clique di�erent from A�� A�� or A�
 Thus each of these three
vertices is in at least three cliques


�c���a�� Observe that� for each graph of F �� the vertex of maximum degree is in at
least three cliques and thus the clique graph contains a triangle
 Since the clique graph of an
induced subgraph of G is a �partial� subgraph of K�G� �see e
g
 ��� Lemma � or �
�� Lemma
�
��� the result follows


�a���b� Suppose vertex v � G is in three cliques A�� A�� and A�� we show that G is not
F �	free
 By maximality� there exists a vertex v� � A� nA�� and there is a vertex v� � A� nA�

such that v�v� �� G
 Observe that v �� v�� v�� and the pair fv�� v�g is in no common clique

We consider two cases


Case �	 Exactly one of v�� v� � A�
 W
l
o
g
 v� �� A� and v� � A�
 Choose nonadjacent
vertices v�

�
� A� n A� and v�

�
� A� n A�
 By our choices and case assumption� v� v�� v�� v

�

�
� v�

�

are distinct vertices since v�

�
�� v �� A��� v� ��� A��� v� �� A�� and v�

�
�� v �� A��� v� ��� A���

v� �� A��
 Also� v is adjacent to the other four chosen vertices� and v�v
�

�
� v�v

�

�
� G
 Then

either fv� v�� v
�

�
� v�

�
g induces a claw or fv� v�� v

�

�
� v�� v

�

�
g induces a �	fan or �	wheel


Case �	 Neither v� nor v� is in A�
 Choose v�

�
� A� n A� not adjacent to v�� and

v��

�
� A� n A� not adjacent to v�
 If v�

�
� v��

�
then fv� v�� v�� v

�

�
g induces a claw
 Otherwise�

like case 
� we have that v� v�� v�� v
�

�
� v��

�
are distinct vertices� v is adjacent to the other four

chosen vertices� and v�

�
v��

�
� G
 If v�v

��

�
�� G then fv� v�� v�� v��

�
g induces a claw� similarly if

v�v
�

�
�� G
 If v�v

��

�
� v�v

�

�
� G then fv� v�� v�

�
� v��

�
� v�g induces a �	fan
 jjjjjjjjjjjjjjjjjjjjjj
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Lemma ���� A graph G is H��free if and only if any vertices in more than one common
clique are in a common blow�up� jjjjjjjjjjjjjjjjjjjjjj

Lemmas �

 through �
� can now be extended to account for blow	ups
 The supposition
of Lemmas �

 through �
� that G be diamond	free is replaced by G being H�	free
 This is
because �by Lemmas �

 and �
�� the reduced graph of a graph that is H�	free is diamond	
free� a graph and its reduced graph have �within isomorphism� the same clique graph� and
�for Lemma �
�� a graph has a �	hole if and only if its reduced graph has a �	hole
 The
single vertex v in the implication of Lemma �

 becomes a blow	up
 The graph G in the
statement following Lemma �
� can be changed from being diamond	free to being H�	free

Now� the modi�ed Lemmas �

 and �
� extend the proof of Proposition �
� �and Theorem
�
�� to Theorem �
�


The facts about gridline graphs noted after the proof of Theorem �
� also apply to �	d
gridline blow	up graphs� with a modi�cation to the �fth fact� When obtainingH fromK�G��
multiple edges can be recovered from vertices inG that are in a common blow	up
 Perfectness
of gridline blow	up graphs follows from a result by Ma�ray ��� that implies that line graphs
of bipartite multigraphs are perfect
 Indeed� it is equivalent to K�onig�s theorem that the
edge chromatic number �� is equal to the maximum degree � in a bipartite multigraph


The algorithms of Section � can be applied to any �	d gridline blow	up graph G by �rst
constructing the reduced graph� this can be done in O�n�� time by comparing pairs of lines
�rows or columns� in the adjacency matrix
 After �nding the cliques in the reduced graph�
blow up each reduced vertex to its original vertices


�� Conclusion

We have reviewed characterizations of gridline graphs in terms of line graphs� clique
graphs� and forbidden subgraphs
 Perfectness of these graphs follows from several previous
results
 Simple polynomial algorithms are sketched for the maximum clique� recognition�
realization� vertex	coloring� and maximum independent set problems
 In particular� the �rst
three of these can be done in time O�jV j�� �as can the fourth and �fth� by applying referenced
algorithms to a bipartite graph�
 Gridline graphs are extended to higher dimensions and
characterized in terms of forbidden subgraphs together with a coloring of the clique graph

This coloring corresponds to the conditions in higher dimension Cartesian space that �
� any
cycle of four lines �where lines must be parallel to some axis� must remain in two dimensions
and ��� given any two lines� there are two dimensions such that any path of lines from one line


�



to the other � except for a path of one line� if it exists � must traverse those two dimensions

Among the questions that remain are� for higher dimensional gridline graphs� the com	

plexity of various problems such as recognition and realization
 Also� the algorithms for
��	dimensional� gridline graphs given in Section � almost certainly can be re�ned
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